Neuroevolution Strategy for Time Series Prediction
نویسندگان
چکیده
منابع مشابه
Time series prediction using DirRec strategy
This paper demonstrates how the selection of Prediction Strategy is important in the Long-Term Prediction of Time Series. Two strategies are already used in the prediction purposes called Recursive and Direct. This paper presents a third one, DirRec, which combines the advantages of the two already used ones. A simple k -NN approximation method is used and all three strategies are applied to tw...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملA Nearest Trajectory Strategy for Time Series Prediction
A method of local modeling for predicting time series generated by nonlinear dynamic systems is proposed that incorporates a weighted Euclidean metric and a novel -steps ahead crossvalidation error to assess model accuracy. The tradeo between the cost of computation and model accuracy is discussed in the context of optimizing model parameters. A fast nearest neighbor algorithm and a novel modi ...
متن کاملSemiparametric Bootstrap Prediction Intervals in time Series
One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...
متن کاملPrediction for discrete time series
Let {Xn} be a stationary and ergodic time series taking values from a finite or countably infinite set X . Assume that the distribution of the process is otherwise unknown. We propose a sequence of stopping times λn along which we will be able to estimate the conditional probability P (Xλn+1 = x|X0, . . . , Xλn) from data segment (X0, . . . , Xλn) in a pointwise consistent way for a restricted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2020
ISSN: 2327-4352,2327-4379
DOI: 10.4236/jamp.2020.86082